Translating Keras LSTM signal analysis example to MXNet

I used MXNet previously to beat keras+tensorflow accuracy in CNN regression models.
Now I am trying to implement LSTM, which in keras runs fine:

from keras.layers import LSTM,Flatten,Input
from keras import Model
import numpy as np

def make_keras_stacked_lstm():
    inp = Input(shape=(100,1))
    lstm1 = LSTM(16, return_sequences=True)(inp)
    lstm2 = LSTM(1, return_sequences=True)(lstm1)
    outp = Flatten()(lstm2)
    return Model([inp], outp)

def keras_main():
    ins = np.random.uniform(size=(1000,100,1))
    outs = np.random.uniform(size=(1000,100))
    model = make_keras_stacked_lstm()
    model.compile(optimizer='sgd', loss='mean_squared_error'), outs, epochs=1, validation_split=.1)

if __name__ == '__main__':
    # main()

How can I translate this to MXNet, in either Symbol or gluon dialect? I found no “return_sequences=True” analogue.